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Abstract35

“Coronavirus Disease 2019” (COVID-19) related data contain many com-36

plexities that must be taken into account when extracting information to37

guide public health decision- and policy-makers. In generalising the spread38

of a virus over a large area, such as a province, it must be assumed that the39

transmission occurs as a stochastic process. This statistically random spread40

of a virus through a population is the core of the majority of Susceptible-41

Infectious-Recovered-Deceased (SIRD) models and is dependent on factors42

such as number of infected cases, infection rate, level of social interac-43

tions, susceptible population and total population. However, the spread44

of COVID-19 and, therefore, the data representing the virus progression do45

not always conform to a stochastic model. In this paper, we have focused on46

the most influential non-stochastic dynamics of COVID-19, hot-spots, utiliz-47

ing artificial intelligence (AI) based geo-localization and clustering analyses,48

taking Gauteng (South Africa) as a case study.49

Keywords: COVID-19, South Africa, Gauteng Department of Health, Risk Ad-50

justed Strategy, Control Interventions, Hot-Spot, Big Data, Artificial Intelligence51
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1 Graphical Abstract52
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2 Introduction53

In late December 2019, a novel coronavirus, named “Severe Acute Respiratory54

Syndrome-related Coronavirus type 2” (SARS-CoV-2), emerged in the city of55

Wuhan, Hubei province of People’s Republic of China (Sun et al. 2020). The56

virus rapidly spread by the 11th of March 2020, resulting in a confirmed global57

pandemic, known as “Coronavirus Disease 2019” (COVID-19). As of the 5th of58

March 2021, the virus is affecting more than 218 countries, with the total number59

of confirmed cases exceeding 116 million and approximately 2.6 million fatalities60

worldwide being attributed to the effects of the virus. A large, worldwide model-61

ing effort is currently underway to improve public health policy decision-making62

with regards to the still ongoing COVID-19 pandemic (Mellado et al. 2021). Many63

research groups and national response teams have looked into country specific in-64

tervention strategies and the effects they have on the transmission rate of the virus65

as well as the impact of pre-existing country characteristics on the transmission66

rate (Duhon et al. 2020; Kong et al. 2021).67

On the 5th of March 2020, South Africa recorded its first COVID-19 case and68

three weeks later, on the 27th of March, South Africa entered a full, government-69

enforced lockdown (Lone and Ahmad 2020). This formed part of a five tier risk-70

adjusted alert levels system (South Africa 2020). The full list of South Africa’s71

moves between lockdown levels can be seen in Table 1 (Ramaphosa 2021). The72

first wave of COVID-19 continued in South Africa until October 2020 where the73

number of new cases had settled to a manageable amount. By late November74

2020, South Africa’s number of cases started to increase and the second wave of75

the pandemic began. The risk-adjusted system implemented allowed a controlled76
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reopening/closing of the economy influenced by a set of factors, including the77

virus transmission rate, number of infectious cases, capacity of health facilities,78

the extent of the effectiveness of the implemented public health interventions and79

the economic and societal impact of continued restrictions.80

Alert Level Wave Start Date Total Cases Recoveries Fatalities

5 1 27 March 927 12 0
4 1 1 May 5951 2382 116
3 1 1 June 34357 17291 705
2 1 18 August 592144 485468 12264
1 2 21 September 661936 591208 15992
3 2 29 December 1021451 858456 27568

Table 1: South Africa’s 2020 Alert Level Progression

The University of Witwatersrand and iThemba LABS COVID-19 modelling81

group have formed part of the Gauteng Premier’s COVID-19 Advisory Committee,82

providing an in-depth analysis of the province’s progress in the pandemic (Choma83

et al. 2020). As part of the Gauteng Premier’s COVID-19 Advisory Committee,84

our modeling efforts provide information that government stakeholders use to in-85

form their decisions, thus allowing a statistical grounds for changes in alert levels86

and distribution of resources.87

COVID-19 data contain many complexities that must be taken into account88

when extracting information to guide public health decision- and policy-makers89

(Roda et al. 2020). This complexity includes factors such as the large number of90

misclassified or under-reported infections, inconsistency and limitations in testing91

as well as fluctuating infection and fatality rates as influenced by social/behavioral92

dynamics.93

As this data is the basis for modeling and therefore, informing decisions around94
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the risk-adjusted policies, understanding and accommodating these complexities95

in the model is vital. In generalising the spread of a virus over a large area, such96

as a province, it must be assumed that the transmission occurs as a stochastic97

process. This statistically random spread of a virus through a population is the98

core of the majority of Susceptible-Infectious-Recovered-Deceased (SIRD) models99

and is dependent on factors such as number of infected cases, infection rate, level100

of social interactions, susceptible population and total population (Choma et al.101

2020). However, the spread of COVID-19 and therefore, the data representing the102

virus progression do not always conform to a stochastic model. In this paper, we103

will focus on the most influential non-stochastic dynamics of COVID-19 hot-spots.104

A virus hot-spot can be defined as a cluster of cases within an area whose105

spreading dynamics do not conform to the general growth of the pandemic, ex-106

hibiting an exponential, short-lived growth. As these collections of cases do not107

conform to the macro-dynamics of the location, they need to be clearly defined108

and understood in order to accurately understand and model the virus progres-109

sion. The geo-localization and clustering analyses of cases for this purpose are110

therefore, vital and can be done using advanced artificial intelligence (AI) geo-111

clustering methods. This clustering approach can therefore, be used to define112

individual clusters as hot-spots and allows the corresponding cases to be removed113

from the stochastic model - providing stochastic predictions that are not biased114

by the hot-spot dynamics (Nowzari et al. 2016).115
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3 Material and methods116

3.1 Data117

The data required for the hot-spot geo-localization analysis needs to be of a high118

level of detail. Therefore, for this paper anonymized data provided by the Gauteng119

Department of Health containing: Case ID, recorded address, test date and geo-120

localization data (including latitude and longitude coordinates). The data has been121

prepossessed to remove geo-localization data that has incorrect address recorded122

or issues interpreting/processing the address.123

3.2 Clustering Cases by Geo-Location124

In order to analyse the area distribution of COVID-19 cases, AI techniques pro-125

vide an excellent tool in grouping cases geographically. In this paper we focus126

on the unsupervised machine learning method, using a Gaussian mixture model.127

This model allows us to analyse and model the dynamics of the virus within a128

determined area.129

3.2.1 AI and Clustering: Gaussian Mixture Model (GMM)130

The given problem is using the location of residence of each COVID-19 case in131

Gauteng to produce clusters. Once defined, these clusters can be analysed and132

accurately labelled as hot-spots or non-hot-spots.133

There exists various clustering methods within AI through unsupervised ma-134

chine learning algorithms that can be implemented to solve a 2-dimensional (lat-135

itude/longitude co-ordinates) problem, such as the present one. After evaluating136
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various methods including the k-means algorithm, the Gaussian mixture model137

was chosen.138

Gaussian Mixture models provide a probability-based approach to the like-139

lihood of a COVID cases being within a cluster by producing a 2-dimensional140

Gaussian probability model overlayed onto the Gauteng map area. The clusters141

produced can overlap with each other, which encapsulates the possibility that hot-142

spots may very well also overlap with each other. The corresponding weight, φ,143

generated for each cluster, provides a simplistic estimate of the importance of the144

cluster, as well as another variable for filtering false clusters from actual hot-spots.145

A Gaussian Mixture model is an algorithm which operates by generating k146

2-dimensional Gaussian probability distributions, where k is a hyper-parameter147

specified. Thus, we are required to generate means, µj, covariance Σj and weight-148

ing, φj where the index specifies the j−th Gaussian cluster. So, the probability of a149

new case, p(x), occurring at a given point x is a linear combination of probabilities150

from all generated clusters:151

p(x) =
k∑

j=1

φi N (x | µj,Σj) , (3.1)

whereN is the normal distribution. We generate the set of normal distributions152

(with associated weights, means and covariances) with an algorithm which opti-153

mally fits the probability distributions given the set of already known COVID-19154

cases and their coordinates.155

In order to generate k-Gaussian probability distribution, the Expectation-156

Maximisation algorithm is employed.157

At the expectation step, we calculate the probability that a point xi was gen-158
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erated by the jth Gaussian for all k distributions:159

γij =
φjN (xi| µj,Σj)∑k
q=1 φjN (xi| µq,Σq)

. (3.2)

In the maximisation step, the probabilities γij are used to generate new cluster160

parameters. That is, new mean µj, co-variance Σj and weight φj are updated as161

follows:162

φj =
N∑
i

γij
N

, µj =
N∑
i

∑N
i γijxi∑N
i γij

, Σ2
j =

∑N
i γij(xi − µj)(xi − µj)

T∑N
i γij

.

(3.3)

These steps are iterated until a convergence criteria is met. In our case, the163

variable x = {x, y} is the set of longitudinal, y and latitudinal coordinate, x.164

Once the latent variables of the Gaussian probabilities distributions (weights,165

means, standard deviation) have been found through the processing of COVID-19166

cases in Gauteng, it is important to verify which clusters are hot-spots, or highly167

infectious areas/districts of the province. In order to accomplish this, the time168

dependent progression of cases is inspected for each cluster independently. That169

is, the cumulative number of cases was computed as a function of the date the170

patients were first recorded to have contracted the virus.171

An aspect to consider is whether the clusters found follow the Susceptible-172

Infection (SI) Curve, which model the number of susceptible people who get in-173

fected, SI(t), over time, within a given area/cluster. The SI equation is shown in174

Equation 3.4:175
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SI(t) =
SI0

1 + e−SI1(t−SI2)
, (3.4)

where SI0 is the total number of predicted cases within a cluster once it has176

saturated the susceptible population, SI1 represents the rate of infection of the177

virus, and SI2 is the number of days before the peak of growth of the cluster.178

This function is a solution to the logistic differential equation, a simple system179

which describes the number of infected cases in a given population. The model is180

applicable as we expect a small increase of infection cases in the early stages of a181

susceptible population, and then a sharp increase as the disease spreads rapidly182

throughout the cluster. A plateau is expected once all susceptible people within a183

cluster are infected.184

The SI curve can therefore, be fitted to the time-series of each cluster in order to185

generate these parameters for the jth cluster, giving more properties to accurately186

filter clusters into hot-spots. A poorly fit SI curve can indicate that the cluster is187

not a COVID-19 hot-spot, as it does not follow an accurate description of disease188

spread.189

Once the cases throughout Gauteng province have been clustered and de-190

scribed, each area can be described through the following parameters; Total Cu-191

mulative Cases (NTC), 1st and 2nd standard deviation area (A1sd and A2sd, respec-192

tively) and the susceptible-infection parameters (SI0, SI1 and SI2).193
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4 Results and Discussion194

4.1 Gauteng Province First Wave Cluster Analysis and Hot-Spot Def-195

inition196

The density distribution of the clusters, shown in Figure 1, forms a Gaussian like197

shape at densities from 0 - 350 cases
km2 followed by a sporadic tail of densities of 350198

to more than 30000 cases
km2 . The uniformity of low density clusters is found to be199

associated with stochastic growth. Thus by cutting the densities at the two Sigma200

interval we are able to produce a density threshold of 196.05 cases
km2 . Clusters with201

densities greater than the threshold (denoted ρc(t)) are found to have rapid, non-202

stochastic growth. This density threshold therefore, allows us to define hot-spot203

clusters as any cluster whose density exceeds the determined density threshold.204
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Figure 1: Gauteng Cluster Density Distribution with Gaussian Fit.

We applied this criterion to the first wave of COVID-19 in Gauteng Province205

where ρcluster(t) is the case density of a given cluster at a given day and ρth is206

the minimum density stipulating hot-spot dynamics. Out of 1,500 clusters, once207
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split on the density threshold 607 of the clusters are defined as hot-spots and the208

remaining 893 clusters are defined as stochastic.209

In order to evaluate this definition further we compare the susceptible-infection210

parameters of the clusters defined as hot-spots against the stochastic or non-hot-211

spot clusters. Figure 2 shows that Hot-Spot clusters have on average an increased212

number of total cases, ±180, than the stochastic clusters, ±90. Hot-Spot clusters213

also have a slightly increased exponential slope with a period of ±10 days where214

stochastic clusters period of exponential slope can be seen to be ±11 days.215
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Figure 2: Gauteng Cluster parameter Distributions Comparison.

An evaluation of this hot-spot definition can be seen using a comparison of216

the total cases in stochastic clusters and hot-spot clusters during the first wave.217

Figure 3 reflects that during the first wave approximately two thirds of the cases218

in Gauteng occurred in hot-spot clusters.219
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Figure 3: Number of Hot-Spot Cases Over Time During the First Wave.

This case distribution shows excellent coherence with first wave stochastic pre-220

dictions (Using a Di-SIRD linear control model (Naude et al. 2020)) compared to221

data, as shown in Figure 4. This example of stochastic prediction demonstrates222

how the emergence of hot-spots in June 2020 did not follow the expected stochastic223

progression of the virus.224
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Figure 4: First Wave Stochastic Prediction Vs Data.

Therefore, it can be seen that the density cut-off value defining hot-spot clus-225

ters successfully is able to extract the clusters growing more exponentially and226

sporadically from those with a more uniform, random growth.227

4.2 Hot-Spot Activity Analysis228

Once a hot-spot cluster’s total cases reaches the plateau or passes the peak of a229

surge, it can be said that the dynamics of the cluster is no longer that of a hot-230

spot. The activity of a cluster at any point in time can therefore, be quantified231

as the ratio of the total cases in the cluster at the respective time divided by the232

total predicted cases of the cluster, SI0, described in Criteria (4.5):233

NTC(t)

SI0
< Lth, (4.5)
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where the activity threshold, Lth, represents the upper bound on actively grow-234

ing clusters using the ratio of Total Cases to Total Predicted Cases. As one would235

expect all the clusters that where defined as hot-spots during the first wave have236

returned to stochastic dynamics after the first wave completion. More specifically,237

we are able to determine an activity threshold. The activity threshold assumes that238

only 1% of clusters remain active in the subsequent period of the first wave with a239

corresponding proportional error. Therefore, as shown in the activity distribution,240

Figure 5, the activity threshold is determined to be 0.85.241
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Figure 5: Gauteng Activity Distribution After First Wave Completion.

The time dependent evolution of newly defined hot-spots as well as hot-spots242

that are returning to stochastic dynamics in Gauteng during the first wave can243

be analysed using the above defined criteria. These dynamics are visualised in244

Figures 6 and 7, respectively.245
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Figure 6: Cumulative and Emerging COVID-19 Hot-Spot Clusters in Gauteng.

40

20

0

20

N
um

be
r 

of
 C

lu
st

er
s Daily Change in Active Hot-Spots Clusters

Hot-Spot Clusters Past Peak
Newly Defined Hot-Spot Clusters

2020-04-01 2020-05-01 2020-05-31 2020-06-30 2020-07-30 2020-08-29 2020-09-28
Date

0

100 

200 

300 

N
um

be
r 

of
 C

lu
st

er
s Total Active Hot-Spot Clusters

Figure 7: Number of Active Hot-Spot Clusters.

To understand the growth of the hot-spot clusters an SI curve is fit to the246
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cumulative number of hot-spot clusters shown in Figure 6. The daily increase of247

hot-spot clusters peaks in mid July, which is confirmed by the SI2 parameter which248

determines the inflection of exponential growth to occur on the 10th of July, 101249

days after the 1st of April. The cumulative hot-spot clusters reaches its plateau in250

mid August coinciding with South Africa’s move from level 3 to level 2, with 594251

of the total 1,500 clusters having already developed into hot-spots. The SI fit to252

the cumulative number of hot-spot clusters describes the period of the exponential253

growth to be approximately 12 days (1/SI1).254

Figure 7 shows not only the emergence of hot-spot clusters but also when hot-255

spots progress back to a stochastic dynamics, described by Equation 4.5. Clusters256

experiencing hot-spot dynamics start to reach their peak, and therefore, progress257

back to stochastic clusters, from mid July. By the end of August a maximum of 39258

hot-spots have reached their peak and by the end of September all but 21 cluster259

have progressed back to stochastic dynamics.260

4.3 Second Wave Risk Index Definition261

Figure 8 shows the risk index at which a cluster can be defined as at risk in Gauteng262

Province.263
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Figure 8: Gauteng First Wave Distributions of Second Wave Risk Index split into
Hot-Spots and Stochastic Clusters.

Therefore, in the second wave analysis, a hot-spot cluster with a RI greater264

than 11 can be classified as a high risk hot-spot. Similarly a stochastic cluster265

with a RI greater than 20 can be classified as a developing high risk cluster.266

4.4 Applications of Hot-Spot Definition for Second Wave267

The definition and parameterization of clustered cases provides various applica-268

tions in informing stakeholders in their decisions related to COVID-19 interven-269

tions and preventative measures. Section 4.4 discusses two of these applications.270

The first application allows for the hot-spot dynamics to be integrated into epi-271

demiological models, while the second and more vital role is to expose potentially272

problematic areas in order to inform intervention strategies and advance social273

awareness and adoption of proper behaviors.274
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4.4.1 Implementation of Hot-Spot Analysis into susceptible -infected-recovered-death275

(SIRD) Model276

A problem encountered in modeling the COVID-19 pandemic is that SIRD models277

generally function stochastically (random β dependent spread through susceptible278

population). However, pockets of cases developing usually in high density areas279

undergo independent, rapid infection that does not fit into larger model. This280

micro-system cluster is referred to as a hot-spot and undergoes independent non-281

stochastic hot-spot dynamics. In order to classify a specific group of cases in282

an area as a hot-spot the cases must first be grouped and their characteristics283

modeled, using each groupings characteristics to define a hot-spot cluster.284

It therefore, follows that in order to produce informative predictions for gov-285

ernmental policy- and decision-makers, such as estimate numbers of hospital beds,286

use of intensive care units (ICUs) wards and when the peak will occur, the hot-287

spot cluster cases must be extracted from the data the stochastic SIRD model is288

calibrated on. The model then is able to interpret the progression of COVID-19289

without the inconsistencies incurred by the non-conforming hot-spot cases.290

This is done by extracting the daily ratio of stochastic cumulative cases from291

the total cases in all clusters and applying this ratio to the recorded data before292

it is used to inform the model:293

Istoch =
Is

Is + Ihs
∗ Id, (4.6)

where Istoch is the stochastic active cases, Is is the active cases in stochas-294

tic clusters, Ih is the active cases in hot-spot clusters and Id is the active cases295

recorded.296
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Hot-Spot Classification Cluster Activity Risk Index

If cluster can be At what point through its The severity of infection
described as a hot-spot progression a cluster is rate and scale of a cluster

Table 2: Summary of specifications of classified clusters

4.4.2 Exposing Hot-Spot and High Risk Clusters297

The primary need for COVID-19 Hot-Spot classification is to target clusters/areas298

where non-conforming, exponential growth is occurring. Using the definition of299

hot-spot clusters developed in the previous sections, clusters can effectively be300

classified and their progression and dynamics described. Table 2 summarizes de-301

scriptive parameters of a classified cluster.302

These three parameters describing each cluster are able to inform stakeholders303

not only on what areas are considered COVID-19 high growth areas but also the304

period of time the cluster will last and how severe the dynamics of the cluster is.305

This can then be visualised in an interactive map for stakeholders as shown in306

Figure 9. The colour code of the clusters visually displays the severity using the307

RI.308

Emerging spatio-temporal hot-spot analysis is of crucial importance for pub-309

lic health policy- and decision-makers and can provide valuable information that310

would not possible to achieve with other techniques, enabling to capture specific311

clustering patterns in terms of particular districts and areas that would be other-312

wise classified as being at low risk for spreading COVID-19. Hot-spot analysis can313

complement classical epidemiological and surveillance approaches, shedding light314

on COVID-19 spatio-temporal trends and the possible evolution of its trajectories.315

Furthermore, the hot-spot analysis enables to easily visualize data in a way that316

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3803878

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 9: Hot-Spot visualisation on gpcoronavirus.co.za. Courtesy of IBM South
Africa.

is accessible for stakeholders and helps them in the decision-making process.317

In the existing scholarly literature, some studies have performed a hot-spot318

analysis of COVID-19. For instance, Shariati and colleagues (Shariati et al. 2020)319

have computed Anselin Local Moran’s I indices to identify high- and low-risk320

clusters of COVID-19 worldwide. Authors were able to locate San Marino and Italy321

as territories characterized by a dramatically high toll of deaths, with infectious322

hot-spots widespread in northern Africa as well as southern, northern and western323

Europe. Noteworthy, infectious cases occurring in these hot-spots represent about324

70 percent of all global infectious cases.325

Other hot-spot analyses have been carried out at the nation level. Mo and326

coworkers (Mo et al. 2020) coupled local outlier analysis with hot-spot analysis327

based on space-time cube metrics in mainland China. Authors were able to demon-328

strate a rather quick, uneven spreading of the outbreak from the cities of Wuhan329
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and Shiyan to the neighbouring areas and provinces. In Italy, combining a va-330

riety of geospatial analytical methods (spatial autococorrelation, spatio-temporal331

clustering and kernel density techniques), infodemiology (Google Trends and web332

searches analysis) and AI methods (machine learning and Adaboost algorithm333

for single-factor modelling), Niu and collaborators (Niu et al. 2020) were able to334

provide an in-depth assessment of the COVID-19 outbreak, in terms of its dis-335

tribution and spreading characteristics. Hot-spots could be identified mainly in336

northern Italy.337

Purwanto and colleagues (Purwanto et al. 2021) explored COVID-19 distribu-338

tion patterns in East Java (Indonesia). Authors were able to identify Surabaya339

as major hot-spot, from which the outbreak reached cities characterized by high340

density of roads, food venues, and commercial and financial facilities.341

In the present investigation, we have provided a robust statistical method for342

distinguishing between hot-spots and areas characterized by stochastic spreading343

of COVID-19 cases. We applied this analytical framework to the first and second344

waves, taking Gauteng province, South Africa, as a case study. These methods345

are general-purpose and can be, as such, applied to other countries as well.346

Hot-spot analysis represents an advanced statistical approach that can be ef-347

fectively utilized for outbreak analytics and visualization. It can equip public348

health policy- and decision-makers with updated, real-time assessment of the pan-349

demic trends and its future projected trajectories. Furthermore, it can comple-350

ment classical epidemiological surveys, leading to the identification of patterns351

that would be otherwise classified as low-risk ones. In conclusion, hot-spot anal-352

ysis has been highly helpful in promptly recognizing high-risk clusters, and to353

adopt/adjust proper public health measures. Since the COVID-19 pandemic is354
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a highly changeable and constantly under flux situation, we can anticipate that355

hot-spot analysis can aid stakeholders in making informed, evidence-based and356

data-driven decisions, while several countries are currently facing the third wave357

of the outbreak and are making efforts in vaccine roll-out.358
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